
MISCELLANEA

DETERMINATION OF THE HYDRAULIC
RESISTANCE OF A REGENERATOR’S PACKING
WITH THE FINITE-ELEMENT METHOD

L. A. Akulov and V. K. Pronin UDC 621.51

A technique for determining theoretically the hydraulic resistance of a regenerator’s packing has been consid-
ered. This technique is based on the finite-element method and may be used in the step of designing of the
regenerator where it is necessary to determine the main parameters of the packing without resorting to full-
scale tests.

Owing to the development of digital technologies it has become possible to improve the quality of calculation
of regenerators used in air-separating units and in cold-air refrigerating machines by increasing the number of factors
in question. However, realization of all of the advantages of automatic-design systems requiress a complete database of
the properties of substances modeled in the considered range of temperatures and pressures and a program making it
possible to process these data.

Most thermodynamic and hydraulic calculations are based on similarity theory. The processes in an object are
represented using a system of criterial equations. As a result, calculation is carried out by analogy with the existing
model or according to the results of testing a specimen.

Below, we give a procedure that enables us to quite easily perform computations, assigning just the external
factors.

In calculating such heat-exchange apparatuses as regenerators [1], we must have their characteristic dimensions
(diameter and height), the type of packing, the mean temperature and pressure of the gas, etc. There is a well-studied
type-dimension series of packings (most efficient in operation) [2] for their calculation. The adoption of automatic-de-
sign systems for processing of data and computer-aided solution of problems according to the procedures presented in
[3, 4] has made it possible to raise the productivity and to improve the quality of the work carried out. Since most
factors have been taken into account in numerical experiments, and corrections for actual conditions enable one to
make the error insignificant, the corresponding calculations yield satisfactory results. However, calculation of a regen-
erator with another type of packing (new or modernized) may cause a significant increase in the error, and such com-
putations are simply unacceptable in some cases. To solve this problem one should manufacture a specimen and carry
out the corresponding tests; however, such an approach may take a good deal of time.

Owing to the significant increase in the rate (number of operations) and depth (use of sixty-four-bit numbers)
of computer-aided calculation, most of the work on "manufacture," testing, and operational development of an object
may be carried out theoretically. For this purpose we simulate the processes of interest on a three-dimensional model
which is a precise replica (or a model to a scale convenient for work) of the taken specimen of the regenerator’s
packing. Graphics editors, e.g., AutoCAD, SolidWorks, 3D S Max, Kompas, and others, are conveniently used for
creation of models of an object.

Creating a model directly in a graphic version is a fairly long (up to a few weeks) and not entirely exact
process. The model may be created most rapidly and qualitatively using a mathematical description of its boundaries.
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Two specimens must be manufactured for experiments when a radically new structure is introduced. One
specimen is used for additional description of the processes or properties that are beyond the scope of the earlier tests,
whereas the other, the control one, is used to confirm theory.

The finite-element (volume) method is the most accurate. It is based on system disintegration of the model to
form elements (cells) in which the processes may be described by simple dependences (linear laws) and the parameters
may be taken to be constant. The method is universal and encompasses a wide range of problems of hydrodynamics,
heat transfer, electrodynamics, strength of materials, chemistry, and many others. An advantage of the method is the
integration of the model’s geometry directly into the process of calculation, which gives an error lower than 5%, when
the basic processes are considered [5, 6].

To efficiently distribute computer time it is sufficient to manufacture a few models that will represent all of
the features of an object most accurately. For example, the packing of the regenerator contains a few elements (corru-
gations or basalt grit) extending with no changes over the entire volume. Subsequently, the data obtained charac-
terizing, e.g., hydraulic resistance, may be included in the similarity-based calculation of the regenerator. Thus, for
creation of a three-dimensional model of a metal packing in the Cartesian coordinate system, we use  the mathematical
dependences and data given in [7].

Figure 1a shows a portion of a corrugated band. The corrugation profile is formed by two curves, E1 and E2,
which are the equidistances to curve C and are offset by half the band thickness δ from it. In the cross section XY,
we represent a disk from a corrugated band as a sinusoid with an axis corresponding to the Archimedean spiral. The
displacement of corrugations along the Z axis (Fig. 1b) corresponds to the angle of inclination β of the corrugations,
and their axis is located on the same spiral.

A regular sinusoid located, e.g., in the XY plane (Fig. 1a), has the form y = sin x [7]. For the sine curve to
correspond to the geometric dimensions of the packing, we introduce a grooving pitch t and a grooving height h. This
yields

y = 
h − δ

2
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2π
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 x



 . (1)

We obtain equidistant curves with the use of a set of points, constructing perpendiculars of size δ/2 to the tangents to
the curve (1). The slope of the curve (1) is its derivative at this point:
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On the same plane, curves E1 and E2 will have the form

Fig. 1. Element of a corrugated band with characteristic dimensions: a) in the
XY plane; b) along the Z axis. 
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Substituting here the values of the function y(x) and the slope α, we obtain
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(3)

In our case, the axis of these curves corresponds to the Archimedean spiral A [7] (Fig. 1). The length of the latter
relative to the angle of rotation ϕ for the condition of close winding of the band is described by the equation

L = 
h

4π
 ϕ √ϕ2 + 1  + arsinh ϕ

 , (4)

and the spiral radius is determined as

R = 
h

2π
 ϕ . (5)

Comparing Eqs. (1), (4), and (5), substituting the Archimedean-spiral length L for x in (1), and reducing the
resulting equation to the axes shown in Fig. 1a, we obtain a system of equations for curve C:
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Analogously we may represent the equations of equidistances E1 and E2.
Figure 1b is a diagrammatic representation of the trajectory Π of displacement of the corrugation cross section

along the Z axis. This trajectory may be subdivided into a few portions with a step dL along the Archimedean spiral
A and a step dH along the disk height Hd. The ratio of these steps corresponds to the slope of corrugations β and
may be written as

dH ⁄ dL = tan β . (7)

The three-dimensional model is easily created using Eqs. (2), (3), (6), and (7) and the initial geometric parameters. For
calculations we use the finite-element method, which enables us to solve a range of various problems and is capable
of replacing full-scale tests. An example of such programs is provided by ANSYS, COSMOS, and others.

Example. The hydraulic resistance of a packing is calculated as follows. In the case in question, we model a
packing manufactured from a corrugated aluminum band [8]: β = 60o, t = 3.14⋅10–3 m, h = 1.35⋅10–3 m, δ = 0.4⋅10–3

m, and Hd = 0.04 m. We model an angular sector in dϕ = 10o for Rin = 0.405 m, Rfin = 0.430 m, and Hd = 0.04 m
(Fig. 1). The dimensions of the sector have been selected from the condition of minimum influence of the boundaries
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on the processes in the packing’s element. With mathematical dependences (2) and (3) whose axis corresponds to the
spiral A, we describe the packing’s element by Eq. (6) and create its three-dimensional model using Eq. (7). Regen-
erators of air-separating units and cold-air refrigerating machines in a regular version have three pronounced zones: a
hot zone, a moderate zone, and a cold one. They are formed due to the change in the free volume: it is the largest
in the hot zone and the smallest in the cold one. The size of the free volume is determined by the geometric dimen-
sions of the packing. In this case, we have considered just one zone of the regenerator’s packing, which corresponds
to the geometric parameters given above.

Using the editors of the program (e.g., COSMOS), we specify the time, physical, geometric, and boundary
conditions on the model. The operating regime of the regenerator is steady-state with parameters constant with time.
We use air as the medium for calculation and aluminum as the packing material. The geometric data are assigned di-
rectly by the model. We have heat exchange between the environment and the body’s surface (boundary conditions of
the fourth kind).

We construct a channel for passage of the gas through the packing’s element (Fig. 2). Thereafter we assign
two cross sections at a certain distance from the packing: the inlet and outlet cross sections. They must be arranged

Fig. 2. Diagram of the model of the regenerator’s packing: 1) element of the
regenerator’s packing; 2) channel for passage of the gas; 3) inlet cross section
of the flow; 4) control planes (on the packing ends); 5) outlet cross section of
the flow.

Fig. 3. Change in the coefficient of hydraulic resistance as a function of the
Reynolds number. f, 1/m

Fig. 4. Change in the pressure loss by one meter of packing as a function of
the mass velocity. P, Pa; Wf, kg/(m3⋅sec).
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so that the flows are uniformly distributed throughout the volume; otherwise, an additional error disturbing the course
of the process will appear in calculation.

We assign the velocity vector (Wf) and the temperature (T = 290 K) for the incoming flow and the pressure
(P = 0.1 MPa) for the outgoing flow. We assign a uniform change in the temperature with packing height (we assume
that the underrecuperation is equal to ∆T = 5 K and the initial value of the temperature difference along the disk
height is ∆T = 5 K). The calculation is carried out without allowance for the deposition of impurities (water and carb-
on dioxide) in the packing’s element. Next we obtain the pressure difference in the assigned cross sections (here these
are the boundaries of the packing of height Hd = 0.04 m), which is the hydraulic resistance of the packing. The results
obtained are given in Table 1 and are presented in Figs. 3 and 4.

Table 1 gives the calculated values of the Reynolds number

Re = 
wfdeρ

µ
 , (8)

the coefficient of hydraulic resistance

f = 
2∆Pde

ρwf
 = 

8∆Pe

ρwfS
 , (9)

where the rate of filtration wf of the gas through the packing is calculated from the formula wf = Wf/ρ, and the pres-
sure loss, which have been obtained in modeling.

Figure 3 gives the coefficient of hydraulic resistance as a function of the Reynolds number. For the sake of
comparison, we have applied points that were obtained as a result of the experiments conducted with an analogous
packing in [8]. Also, this figure gives the curve characterizing the change in the coefficient of hydraulic resistance as
a function of the Reynolds number [8]. The curve obtained is characteristic of regenerator packings with a corrugated
band. We observe a laminar flow regime characterized by a rectilinear portion (Re < 250) and a bent transient portion
of the curve with further turbulization of the flow.

Figure 4 plots the pressure loss as a function of the mass velocity. Points correspond to the data obtained as
a result of the experiments [8], with an analogous packing. The results obtained are comparable to the data of [8],
where calculations and experiment for an analogous disk were carried out. As follows from the figure, the pressure
loss uniformly increases with flow velocity and has a rectilinear dependence, just as in [8].

In Figs. 3 and 4, it is seen that experimental points (particularly in the laminar regime of flow) fairly well
coincide with calculated curves. This suggests that this form of modeling may be recommended for evaluation of the
hydraulic resistance of the regenerator’s packing.

The slightly overstated pressure loss and coefficient of hydraulic resistance compared to the data obtained in
[8] for an analogous geometry of the packing may be explained as follows:

1) in the case in question we have considered an individual disk, whereas in [8], consideration was given to
the entire regenerator where the disks are spaced a certain distance (not indicated in [8]) apart; in this connection, the
pressure loss was given without allowance for the interdisk clearance;

TABLE 1. Results of Calculation for 1 m of Packing Length

Wf Re f
∆P

of one disk per 1 m of packing
1.5 118.0 1.0757 22.58 564.6
2.0 157.4 0.7321 27.32 683.0
3.0 236.0 0.5424 45.54 1138.5
4.0 314.7 0.4907 73.25 1831.4
5.0 393.4 0.4662 108.8 2718.9
6.0 472.0 0.4520 151.8 3795.6
7.0 550.7 0.4414 201.8 5044.5
8.0 629.4 0.4346 259.5 6487.8
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2) in modeling, we observed the phenomenon of reflection of a part of the straight flow from the end sur-
faces of the corrugated band, which produced additional resistance to the motion and turbulization of the flow;

3) calculation was carried out for one disk the temperature difference in which was 5 K, unlike the tempera-
ture difference on a larger portion of the packing in [8] (it is about 150 K for the total height of the regenerator and
50 K for one zone of the disks).

The time of creation of the model in AutoCAD and SolidWorks was 3 min (with an established accuracy of
12 characters). The time of recognition of the model with the creation of more than 100 thousand cells was 20 min.
Calculation of the "mean accuracy" takes 15 min and attains about 150 iterations. Two Intel Xeon processors operating
in parallel with a frequency of 2.8 GHz have been used.

CONCLUSIONS

1. Despite the fairly long computational time (about an hour per packing element), this method of designing
is more rapid than full-scale tests.

2. The method of modeling proposed for determination of the hydraulic resistance of the regenerator’s packing
makes it possible to carry out calculation for different variants of the packing geometry with the aim of selecting the
most optimum parameters, for which the hydraulic resistance is minimum.

NOTATION

dH, step along the disk height, m; dL, step along the Archimedean spiral, m; de, equivalent diameter, m; dϕ,
angle of the circular sector of the packing element, deg; e, free volume, m3/m3; F(), function of the dependence of the
pressure loss on the mass velocity; f, coefficient of hydraulic resistance, 1/m; Hd, disk height, m; h, grooving height,
m; L, length, m; P, pressure, Pa; R, radius, m; Re, Reynolds number; Rfin and Rin, final and initial radii, m; S, specific
surface, m2/m3; T, temperature, K; t, grooving pitch, m; Wf, mass rate of filtration of the gas, referred to the flow area
of the packing under normal conditions (P = 101,325 Pa and T = 273.15 K), kg/(m2⋅sec); wf, filtration rate, m/sec;
XYZ, Cartesian coordinate system; x, y, and z, values of the coordinates; α, slope of the curve at an assigned point
to the horizon, deg; β, angle of inclination of corrugations, deg; ∆P, hydraulic resistance, Pa; ∆T, temperature differ-
ence, K; δ, band thickness, m; µ, dynamic viscosity of the gas at the mean temperature and pressure, Pa⋅sec; ρ, den-
sity of the gas at the mean temperature and pressure, kg/m3; ϕ, angle of rotation of a point in polar coordinates, rad;
ψ(), function of the dependence of the coefficient of hydraulic resistance on the Reynolds number. Subscripts: d, disk;
fin, final; in, initial; f, filtration; e, equivalent.
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